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 The force concept inventory (FCI) is a set of multiple-choice items that has been administered and analyzed in a 

number of regions across the world. The purpose of this study is to evaluate students’ comprehension of force 
concepts, using a thread that examines and analyzes the most common force concept misunderstandings among 

students. The FCI is distributed to 1,440 senior four students from various Ugandan schools. The ITEMAN software 

is used to assess students’ performance. Then a few FCI items are examined to acquire a better grasp of the 

students’ misunderstandings. Using the Gnuplot software, we displayed the students’ total scores versus their 

percentage scores for each FCI alternative choice, which provides greater visual confirmation of the findings than 
statistical analysis. The findings show that misunderstandings dispersed in accordance with students’ 

performance. The distractors are the most appealing of the analyzed FCI items, with the highest percentages of 

students picking each alternate option. Imitating that students enter physics classes preconceived about their 

prior knowledge, viewpoints, ideas, and values. As a result, this study underlines to Ugandan physics teachers that 

students have misconceptions. Physics teachers and students should interact in an active learning environment 

using conceptual change methods to correct misconceptions. 
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INTRODUCTION 

Previous concepts gathered prior to new learning by students have a significant impact on the building of new knowledge in 

science. Physics is a key science discipline taught in secondary schools that discusses physical occurrences and how they relate 

to man’s daily existence. There is a chance that cultural ideas impact how concepts are learnt and manipulated. For meaningful 

learning to occur, physics teachers must support their students in applying their knowledge in ways that rely on their cultural 

experiences. Learning is understood to be culturally dependent in that students’ capacity to reason on applied scientific problems 

usually linked to their beliefs (Chala et al., 2020). Most natural phenomena and challenges in African life are usually difficult to 

explain using scientific understanding. This is due to the fact that mythology and superstitions abound in the majority of students’ 

beliefs. It is based on the power of witchcraft and evil spirits, which are prevalent in African life but are not explained scientifically. 

Students’ everyday experiences in the classroom, in the environment, and in the scientific world lead to a divergence. With the 

majority of students finding it difficult to scientifically describe, analyze, evaluate, and forecast natural phenomena (Driver et al., 

2014). 

Understanding of the subject matter is essential for good physics instruction. Physics teachers must have pedagogical 

expertise in the field, understanding of students’ learning issues, and sympathy for students’ shortcomings in order to teach 

physics. In recent years, the Uganda National Examination Board (UNEB) and higher education institutions have expressed 

concern about poor academic performance in physics. The performance of candidates produced by Ugandan secondary schools, 

where passes in physics are below 20% at distinction and credit level, has been disputed by UNEB (2019). Various scholars attribute 

low performance to a variety of factors, including a substandard learning environment, unskilled instructors, students’ attitudes, 

career desire, and parental and peer influence. However, the majority of academics believe that students’ cognitive styles toward 

physics have a significant impact in their poor performance. Furthermore, physics teachers’ ineffective pedagogical techniques 

encourage students to focus on preparing answers rather than understanding concepts (Komakech & Osuu, 2017; UNEB, 2014). 

The Ugandan government has been working with a number of science projects, including Secondary Science Teacher Education 

in Sub-Saharan Africa (TESSA), Secondary Science and Mathematics Teachers (SESEMAT), and others to improve the efficiency of 

science and mathematics teaching and learning, with a particular focus on secondary science and mathematics. 
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Students’ comprehension is investigated, science is made realistic, science is made meaningful and actual, problem-solving 

and inventions are encouraged, and challenging concepts are addressed. Despite government initiatives, students continue to 

receive poor results in science disciplines, particularly physics, and only a tiny percentage of science students’ progress to the 

upper secondary level (Ssempala, 2017). The persistently low and unsatisfactory performance rate is a clear sign that the 

secondary education system is troubled, diseased, and decaying, and that it demands immediate and comprehensive reform and 

repair. The drop in student performance has become such a trend that educational authorities are dismissing it, which is 

concerning (UNEB, 2019).  

Physics teachers have a significant impact on the efficacy and accomplishment of students in the subject. Physics instructors 

must not only add new concepts to students’ existing knowledge, but also realign their thinking and enable them to construct new 

ideas that may disagree with their current beliefs. Physics educators and researchers have intensified their efforts to discover and 

comprehend the nature and scope of elements that influence learning and accomplishment in physics in order to align students’ 

thinking. As a result, the study’s goal is to use a thread to test students’ conceptual comprehension of force concepts in the 

Ugandan context, as well as misconceptions about them. Around the last four decades, physics education research (PER) has been 

undertaken all over the world, offering information on how to increase physics student outcomes. 

Using concept inventories (CIs), the PER community has developed a way to measure the effectiveness of pedagogical practice 

and students’ learning gains during the last three decades. A CI is a research-based multiple-choice instrument used to assess 

learners’ conceptual comprehension (Porter et al., 2014; Sands et al., 2018). Each question (item) has one correct response and 

four to five erroneous responses, known as distractors, based on common student misconceptions, using a variety of fundamental 

concepts from the physics domain. The concept of a misconception, sometimes known as an alternate conception, is critical to 

mental understanding measurements. CIs are not the same as final exams in that they do not pretend to cover everything in a 

subject. CIs are designed to include students’ everyday concepts and natural language in a multiple-choice format. In order to 

perform well on these types of assessments, students must have a thorough comprehension of the concept(s). Over the last 30 

years, CIs have had a significant impact on physics education reform. Their impact on physics education is meant to encourage 

educational improvements (Hake, 2011). The broader PER community uses evaluation instruments established for student 

thinking studies to provide uniform teaching and learning measurement. They help physics educators figure out what their 

students know and can do in class. 

In this study, the force concept inventory (FCI) is used. It is the first and most well-known CI (Hestenes et al., 1992). The FCI is 

created to investigate commonsense ideas about motion and force that contradict Newtonian conceptions. We decided to use the 

FCI in this study because of its success in the field of physics and subsequent educational reforms. The FCI, as a diagnostic 

instrument, comprises six conceptual domains that are consistent with the National Curriculum Development Centre’s (NCDC, 

2008) physics syllabus for Uganda’s Certificate of Education. The NCDC content syllabus described in the preceding part of 

methodology is appropriately covered by the FCI conceptual areas. The general NCDC physics education objectives are covered, 

which include establishing effective means of assessing the prevalent misunderstandings among secondary school physics 

students. The FCI’s main goal is to identify a distinction between Newtonian notions and commonsense alternatives proposed by 

individual students. The FCI test is a reliable assessment tool for measuring the quality of education since it identifies the learner’s 

misconceptions about force and motion (Hake, 1998).  

As a result of this research, the science education community will be better equipped to advocate for the use of alternative 

testing methods that have yet to be explored, such as CIs, observations, peer teaching, and multi-teacher rating. In comparison to 

traditional pen-and-paper assessments, these would measure a learner’s intelligence level, which is otherwise hard to measure 

with a single mode of measurement. In light of the foregoing, our research is a step toward a larger project we are working on, 

which entails creating a Ugandan context-specific inventory (circular motion concept inventory). To track learners’ shifts in 

conception, analyze teachers’ instructional activities, and identify learners’ circular motion alternative conceptions (Kirya et al., 

2021). The authors argue that adopting a credible and globally recognized FCI to examine students’ previous experiences at the 

secondary school level is essential. This empirical study reveals gaps in the field that will be highly useful to young generation 

researchers, education sectors and associated, Ministry of Education and Sports, government, and non-governmental 

organizations. The results of the FCI conceptual study in various regions are summarized in the next section. 

LITERATURE SURVEY 

The Concept of Constructivism  

Constructivism is a dominated thought since the 18th century. Its beginnings are in theory, but it has since been used to 

sociology, anthropology, social psychology, and education. The term constructivism has been defined extensively. Depending on 

the author’s meaning and interpretation, the definition can be different. Constructivism is defined in this review as a mechanism 

(Behera, 2012) through which students develop their perception, truth, and knowledge of the environment in which they live by 

modeling their perceptions and relationships within the educational setting. Knowledge is defined as dynamic, genetically 

influenced, socially and culturally influenced, and hence pre-objective in philosophy. Constructivism is a philosophy that is based 

on scientific notions and knowledge into how students learn. When learners come across something new, they must compare it 

to their previous actions, beliefs, and perceptions, which may cause them to change their minds or dismiss the new information 

as useless. No matter how it is expressed, understanding is in the minds of learners, and the subject matter of learning has no 

choice but to develop what the learner learns based on their own experiences. 
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Despite, the fact that constructivism is not a new concept it has gained attention in recent years. The principle of 

constructivism can also be found in the philosophies and literary works of intellectuals such as Socrates, Plato, and Aristotle who 

wrote about knowledge facts before John Dewey. The educational literature acknowledges eighteen various forms of 

constructivism in terms of procedural, radical, didactic, critical, feminist, postmodern, and dialectical aspects. Several 

philosophers and academics have divided constructivism into three categories; sociological, psychological, and radical 

constructivism (Chellammal, 2016; McLeod, 2019). This review is not interested in the numerous divisions that explain the 

extensive distinctions according to Jean Piaget’s study as cognitive constructivism, Lev Vygotsky’s research as social 

constructivism, or von Glasersfeld’s supported radical constructivism. In the following parts, we look at the constructivism 

paradigm and how it relates to scientific education and constructivism. 

Education and Constructivism  

Constructivism in education is essentially based on Piaget’s cognitive growth theory, which was published in 1970 as a tangible 

component of his biological adaptation. After sensory-motor intelligence, Piaget in 1999 identified and classified four fundamental 

stages of a person’s cognitive development. Both social behavioral neuroscience and epistemology inform constructivism in 

scientific teaching. Constructivism has been accepted by a rising number of scientific education scholars since the 1980s 

(Chellammal, 2016; Juvova et al., 2015). Constructivists agree that science education should be centered on the students, and that 

teachers should act as facilitators via imparting instruction rather than as agents who pass on knowledge. The social context 

increases learner focus through subject matter teaching, emphasizing the recognition of existing values, facts, and experiences 

that learners bring from other places as part of the philosophy. Previous learning experiences have been shown to have a major 

impact on how students make meaning of what they have learned. 

Constructivist Science Teaching 

Knowledge cannot be transmitted directly from a teacher to a learner, according to the Education constructivism theory. The 

learner must be willing to actively voice his or her various points of view (pseudoscientific ideas). The teaching philosophy is 

important because it explains how to erase or redirect current thinking in order to induce a cognitive shift in students. Science 

educators offer the constructivist learning strategy during educational exercises (Bächtold, 2013). Constructivism is being 

identified by teacher educators as a modern philosophy capable of overcoming any science teaching-learning issues and is a good 

concept for both teaching and undergraduate education. 

Learners often have past conceptions that are “alternatives” to scientific concepts that exist despite teaching or coexist with 

present knowledge (Bächtold, 2013). They remain active in a variety of “contexts” and have become “natural” as a result of prior 

students’ experiences. Teachers of science who use constructivism in their pedagogical efforts must cope with learners’ 

preconceptions. The goal should be to “alter” existing beliefs and remove the “difficulty” or “obstructions” that come with learning 

scientific notions. 

Constructivists say that rather than functioning as authorities who pass information on to students, physics educators should 

be learner-centered and promote study. This aids educators in assessing students’ comprehension. Develop teaching tactics that 

increase cognitive stress and allow students to better shift their alternate interpretations. Because learning relies on the shared 

experiences of learners, peers, and teachers, learners must engage effectively in learning. So it comprises a small number of 

concepts and places a greater focus on understanding, philosophical shifts are regarded as gradual (Singh & Yaduvanshi, 2015). 

The Pedagogical Constructivism and Use in Science Education 

The endeavor to involve the student actively in the learning process is emphasized throughout the educational system’s 

theory. Constructivism in education recognizes the importance of learners in the development of personal understanding. Hendry 

in 1996 developed key constructivist concepts for teaching/learning methods in the classroom (Matthews, 2012). The following 

are some of the principles:  

1. Even in the mind of the student, there is intellectual capacity. At the same time, information is available in the minds of 

both the learner and the schoolteacher. There is no such thing as a chalkboard, books, web sites, speaking educator or 

student, or activities arranged by instructors and learners. 

2. Learners form their perspectives of events based on their previous experiences. Students and instructors attach meaning 

to instructional information (e.g., records, photographs, artifacts, audio-visual resources, and digital tutorials) based on 

their current experience and beliefs. 

3. Knowledge is based on inward contact with the universe. Teachers or teaching practices in particular, do not change 

students’ ideas; rather, students’ ideas are constructed from the inside out as a result of their interactions with the 

environment of which educators are a part. 

4. There is no such thing as certain knowledge. Because knowledge is vulnerable to misinterpretation of conclusions or 

axioms on which evidence is founded, it can never be guaranteed. Teachers are seldom sure of the words they employ to 

communicate anticipated knowledge to students, and vice versa.  

5. Scientific knowledge is created by a single brain and body that exists in the same universe. Learners from many countries 

and communities share the same ideational knowledge of natural phenomena, according to a study of their everyday 

conceptions.  

6. Perception and action are the foundations of knowledge. Through perceptual and cognitive-action, students receive new 

information by comprehending and acting on classroom activities, as well as talking with the teacher and/or each other. 
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7. Building knowledge takes time and effort. Teachers must endeavor to encourage students’ positive actions in order to 

create an environment free of danger and fear from the outside world. They should seek for a “friendly learning 

environment.”  

In science education, success is frequently defined as the learner’s ability to develop, establish, and adapt meaning in a way 

that depends on existing knowledge. Learners must be motivated to apply what they have learned so far to a new situation in 

order to achieve a better understanding (Matthews, 2012). The section that follows examines research that used the FCI to assess 

conceptual gain and existing misunderstandings.  

A Review of Students’ Misconceptions 

Students’ conceptions grow and alter as a result of their daily experiences, and they become crucial components of their lives. 

Students develop notions in their thoughts as a result of their classroom experiences or daily activities outside of school (Kaniawati 

et al., 2019). Because students have varied life goals, their experiences will vary depending on whether they have the correct or 

incorrect scientific concepts. New physics teachers typically imagine student as “blank slates” with which to inscribe a wide range 

of physics notions. Students are not “blank slates,” or else teaching and learning would be a breeze. Before arriving to formal 

schooling, students get an awareness of daily activities. Students’ perceptions of formal notions presented, as well as how they 

categorize and interpret them, are influenced by their knowledge, skills, experiences, and beliefs received from the natural world 

(Bozzi et al., 2019). Students communicate their ideas without relying on scientifically validated scientific notions connected to 

the area of study.  

Students’ capacities to reason and learn new knowledge are influenced by their existing knowledge and experience. 

Misconceptions (also known as “alternative conceptions”, “misunderstandings”, or “preconceptions”) are the differences 

between students’ and scientists’ conceptions. Because new knowledge is constructed on the foundation of previous knowledge, 

physics teachers must struggle with the preconceptions that students bring with them. As a result, changing students’ 

preconceptions from inaccurate to correct information is difficult and time-consuming because the misconceptions are deeply 

established in their prior knowledge paradigm (Kaniawati et al., 2019). 

A number of academics in the PER discipline are investigating student misunderstandings to comprehend learners’ ideas that 

are not scientifically valid. Students’ understanding of notions that are incorrect according to expert theory, if allowed 

uncontrolled, always impair students’ achievement. A variety of strategies are used to assess student misunderstandings. 

Instruments can include concept inventories, multiple-choice questions, concept maps, description questions, and graded 

questions (Gurel et al., 2015). The instruments include diagnostic test questions that are used to assess students’ misconceptions 

and include indications of scientific literacy. The focus of this study is on the force concept inventory (Hestenes et al., 1992) as the 

tool for determining students’ misunderstandings.  

Hestenes et al. (1992) investigated and studied college students’ “common sense” ideas about how the physical world works 

based on personal experience. In most ways, common sense assumptions about motion and force are inconsistent with 

Newtonian concepts. Students are enticed to cope with the subject matter through rote memorizing because traditional physics 

training produces little change in their beliefs. A survey uses multiple-choice diagnostic pretests and posttests, as well as 

interviews, to create the misconceptions (Hestenes et al., 1992). An object slows down when there is no net force; an object moves 

at a steady pace when there is a constant force; and an object requires an impetus to maintain motion. As a result of the survey, 

taxonomy of “common sense” conceptions that contradict Newtonian theory is developed as a guide to instruction. According to 

Hestenes et al. (1992), there should be a conceptual criterion of 60% for a student to be regarded grasping the Newtonian concepts 

on the inventory. Below the criterion, there is a knowledge gap that requires appropriate remediation, with misunderstandings 

taken into account. 

Fadaei and Mora (2015) looked at high school students’ misconceptions about force and motion before and after formal 

(conventional) training, as well as their stability. Students of various educational levels and ages frequently hold commonsense 

alternatives. Students’ misunderstandings in mechanics, from elementary through high school, and university students’ grasp of 

Newton’s laws, suggest that certain inaccurate assumptions about the physical world exist. Because Newton’s laws of motion play 

such an important part in exploring the universe, Fadaei and Mora (2015) looked at how students used the FCI to help them build 

a deeper understanding. The method used to quantify changes in performance is a defining aspect of the pre- or post-testing 

design, according to the commonsense beliefs. The students’ average percentage results imply that the traditional approach is 

effective in promoting learning in various areas of the topic. However, it is discovered to be unsuccessful in some cases of FCI items 

in other regions of the world. The number of erroneous replies significantly increased, indicating that traditional teaching methods 

are ineffective in encouraging learning and correcting misconceptions. Traditional instruction has no bearing on common sense 

misconceptions (Fadaei & Mora, 2015). A physics curriculum should be revised and new contexts planned to assist students think 

like scientists and explore real-life occurrences in mechanical scenarios. 

As students precede through their science education levels, the existences of alternate concepts among learners are reinforced 

and extremely difficult to modify (Nik-Daud et al., 2015). Nik-Daud et al. (2015) looked at some of the literatures on introductory 

physics misconceptions and problems among high school and university students. The generalized basic notions of students’ 

misconceptions about forces and motion in mechanics have been identified in previous studies in scientific education (Driver et 

al., 2014). Namely, (i) there is a force acting if there is motion;( ii) there is no force acting if there is no motion;(iii) there cannot be 

a force without motion; when an object is moving, there is a force in the direction of its motion; (iv) a moving object stops when 

its force is used up; (v) a moving object has a force within it that keeps it going; and (vi) motion is proportional to the force acting. 

New instructional strategies focusing on conceptual change should be implemented in physics education to eliminate students’ 

alternative ideas. Teachers should stress the quality of students’ understandings rather than just surface learning of exam scores 
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to encourage deep understanding of subjects among students (Nik-Daud et al., 2015). As a result, conceptual comprehension is 

critical, and it should be a primary focus of instructors’ interest in physics teaching and learning. 

To summarize, a number of PER research are using the FCI to explore the level of students’ conceptual understanding, as well 

as the effect of educational level on conceptual understanding of Newtonian mechanics. The FCI has been used to investigate 

students’ misconceptions about Newton’s laws through a number of applications. It is the first time in Uganda that FCI has been 

administered to secondary school students in order to assess their performance and uncover misconceptions. In the Ugandan 

setting, there is no data available for FCI-based research. As a result, in order to assess the FCI’s suitability, concept items must be 

analyzed utilizing the constructivism approach in Ugandan secondary schools and compared to earlier empirical research studies 

completed by PER academicians. 

METHODOLOGY 

The Force Concepts in the UCE Physics Teaching Syllabus  

The Ministry of Education and Sports provides a physics teaching syllabus for UCE following the National Curriculum 

Development Centre’s (NCDC, 2008) recommendations. NCDC developed a four teaching program that organizes the content in 

the present physics syllabus into a pedagogical hierarchy. Creating a society that knows and values physics, as well as 

comprehending naturally occurring occurrences and students’ interpretations, are among the broad physics education goals. 

Newtonian Mechanics is a general main topic in the UCE teaching program. The scope is clarified by subtopics such as introduction 

to forces, turning effect of forces, and centre of gravity, machines, work, energy, and power, pressure, motion, vector and scalar 

quantities, linear momentum, Newton’s laws of motion, friction between solids, mechanical energy, Archimedes principle, and 

fluid movement, and properties of materials under stress and structures. The subtopics properly cover the content covered by 

Hestenes et al. (1992). 

Force Concept Inventory  

The FCI is used as a research instrument in this study as a diagnostic tool. FCI is a set of 30 multiple-choice questions (Hestenes 

et al., 1992) frequently used in beginning physics courses to test and analyze student conceptual comprehension of Newtonian 

mechanics. Each item depicts a physical situation and offers five options. One of the five choices corresponds to the proper 

physical notion, whereas the other four correspond to popular alternative views. Kinematics, Newton’s equations of motion, the 

idea of superposition, and many types of force are all covered in the FCI. The FCI is no longer just another physics test. It assesses 

a student’s overall grasp of Newton’s concept of force in relation to motion. Furthermore, the FCI’s selection is justified because 

it identifies and categorizes the learners’ misconceptions. 

Validity of the FCI Instrument 

Content-related and face-related evidence are used to determine the validity of the FCI. FCI was examined by four physics 

educators for content-related validity. A copy of the FCI test and a brief description of the data collection procedures were given 

to each expert. In addition, the four experts were asked to remark on the clarity of each item’s phrasing as well as its complexity. 

The four experts were asked to make suggestions on how the test items and their wording may be improved. The phrasing of the 

items and their complexity were discussed by both experts and no issues were raised. The items were appropriate in terms of the 

objectives and their applicability to Ugandan secondary school physics. The FCI test did not undergo any changes in terms of the 

language of the test items based on the comments provided by the experts. Following the experts’ evaluation, we conducted a 

field test to determine face validity. A set of five secondary school students (not included in the study population) were asked to 

provide feedback on the instrument’s clarity, language, thoroughness, ease of use, and appropriateness. The test’s 

appropriateness was strengthened as a result of this approach. This indicates that the FCI test did not address any potential 

sources of student readability difficulties. As a result, the FCI test is administered to a large number of secondary school students. 

Sample of the Participants 

In this study, the target group is senior four students in Ugandan secondary schools, both male and female. In senior four, the 

students are between the ages of 15 and 17. As a representative sample, one thousand four hundred forty senior four students are 

selected at random from various schools and districts. A multi-stage sampling process was employed to randomly choose students 

in Ugandan secondary schools. Six secondary schools were selected from Uganda’s four geographical areas (East, West, North, 

and Central). In Ugandan secondary school data, the 1,440 is regarded representative and generalizable to analyze students’ 

statistics (Taherdoost, 2016). Sixty students from the multi-stage sampling school were chosen at random for the FCI test by their 

physics teachers. 

Physics teachers at the sampled schools assisted in the preparation of a testing environment for the FCI test. The students 

were encouraged to respond to the FCI test items based on what they thought and believed is correct. They were told not to copy 

their colleagues. They were discouraged from disrespecting the UNEB guidelines and regulations by their physics teachers. 

Teachers were urged not to conform to the instrument’s time limit, allowing those who requested more time to be given. A total 

of 1,440 response sheets were collected from students around the country who responded from their respective testing schools. 

The response sheets of the students are scrutinized. Before being organized for processing and analysis, the survey response 

sheets are scanned and cleaned. Nine hundred and forty-one clean response sheets were coded and analyzed. In the following 

section, we will go through data analysis approaches. 
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Analysis of Data  

We were able to generate the data matrix and item control files by converting the response sheets into Microsoft Excel 

spreadsheets. The ITEMAN program is used to statistically analyze the two files (item and test analysis manual). This program is 

well-suited to multiple-choice items, such as the FCI items utilized in this study (Appendix A). The program’s descriptive statistic 

variables were of interest for further investigation. These are used to evaluate FCI items selected for analysis representing each of 

the conceptual domains designed. We established their applicability based on test item qualities like validity, reliability, difficulty 

level, discrimination powers, and distractors’ performance.  

DISCUSSION AND INTERPRETATION OF DATA 

The FCI was used as a survey instrument with 30 MCQs to collect data on students’ concepts and beliefs regarding force and 

motion. Students in various schools across the country were given the FCI to test. The students’ ideas and beliefs were limited to 

the FCI item circumstances in the inventory, to which they answered by selecting the option that they felt and believed was correct. 

The following results were acquired after collecting, tabulating, and analyzing student responses using the ITEMAN software. 

According to a summary of descriptive statistics, 30 FCI items were investigated, and 941 students completed the test by 

responding to all FCI items (Table 1). The students who took the test were both boys and girls from secondary schools. The average 

score of the students was 6.52, with a standard deviation of 2.282. The highest-scoring students received a maximum of 15 correct 

answers, while the lowest-scoring students received only one correct response. The mean score (mean P or difficulty index) of the 

proportion of students who correctly reply to the test item as a percentage of the total number of students is 0.217. This is an 

indicator that the FCI test items were difficult for the students to complete. We then proceeded to analyze five FCI items (3, 4, 7, & 

20) in order to gain a more complete understanding of why the students’ performance is unappealing. The psychometric index 

study of the FCI items was the first step. 

The most important component in developing any instrument is establishing the construct and matching content validity. The 

point-biserial correlation was used to assess the validity of FCI items. In classical item analysis, a conventional procedure is 

employed (Attali & Fraenkel, 2000). 

As a secondary statistical analysis to the content, Table 2 illustrates the distribution of FCI items chosen based on their validity. 

For the point-biserial correlation, we set a minimal threshold value of 0.15; however, scholarly literature suggests that good idea 

items have a point-biserial over 0.25 (Attali & Fraenkel, 2000). The validity of the selected FCI items in this educational environment 

was judged using a minimal threshold value in this study. The 5-point biserial coefficients (100%) were all less than the threshold 

value. The findings of Table 2 appear to be at odds with the experts’ guidance in the methodology section when it comes to 

analyzing the content validity of the FCI instrument. This finding backs up the students’ average performance in Table 2.  

Table 3 shows the difficulty level of the items chosen. The ITEMAN-calculated distribution of FCI items by difficulty level 

illustrates the results of the computation and their categories. None of the items selected fell into the 0.75-1.00 easy category. The 

students appeared to struggle with notions of types of forces (item 3) and kinematics concepts of velocity differentiation from 

position (difficult). Students struggled with the third law of motion (item 4) and vector addition of velocities (item 14) ideas. Item 

7, which depict Newton’s first law, was rated as moderately easy. The item 20 emphasizes the importance of grasping the concepts 

of position, velocity and acceleration. The probability of a certain number of students selecting an alternate option is shown in 

Table 1. 

Table 1. Summary of the students’ performance 

Statistics Scored items 

N 941 

FCI items 30 

Mean 6.52 

Standard deviation 2.282 

Minimum score 1 

Maximum score 15 

Mean P 0.217 
 

Table 2. Validity index of the FCI items 

Validity index Classification Items of FCI Coefficients 

<0.15 Invalid 3, 4, 7, 14, & 20 0, 0.03, 0.07, 0.04, & -0.01 

≥0.15 Valid - - 
 

Table 3. The difficulty level of items on the FCI test 

Level of difficulty Classification Items of FCI Coefficients 

0.20-0.00 Difficult 3 & 20 0.13 & 0.09 

0.21-0.25 Fair 4 & 7 0.22 & 0.23 

0.26-0.74 Moderate 14 0.43 

0.75-1.00 Easy - - 
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We calculated the percentage of students that chose an alternate option for each of the five alternatives for each of the items 

we chose. We chose five items for graphical presentation after doing this analysis item by item for all 30 FCI items. For each of the 

five items, we created a normal curve graphical presentation with percentage replies for each alternative option as the dependent 

variable and the overall score as the independent variable. Five normal curves are displayed in each graphical presentation, one 

for each alternative option. The five FCI items examined fall under several categories of misconceptions. Kinematics, active forces, 

impetus, concatenation of influences, action-reaction pairs, and other motion influences are the categories. Hestenes et al. (1992) 

compiled a complete taxonomy of the misconceptions measured by student responses to Newtonian thinking. The graphical 

presentations graphically exhibit the FCI item data sets in an understandable way and provide all of the information on a single 

page with good illustration for function distractors comparison. 

Graphical Presentation of the Distractors and the Key Options 

This study examines all erroneous answers for each FCI item in order to identify the most common and persistent 

misconceptions. The percentage replies of the students to each alternate choice for the five items are shown in Table 4. Those are 

the ones depicted visually. The percentage of the number of students selecting an option is plotted against the total score. 

Distractors were assigned to item 3 (Figure 1): B (speeds up as it falls due to gravitational attraction, then attains constant 

speed), E (falls due to the combined effects of gravity), and C (in the beginning, speeds up because of an almost constant force of 

gravity acting). Other than the keyed choice C, the three distractors caught the interest of students with higher percentages 

(reaches a maximum speed quite soon after release and then falls with constant speed). This indicates that students’ 

comprehension of gravity increases as objects fall (Moradi et al., 2018; Nik-Daud, 2015). 

Only one distractor A (the truck exerts more force on the vehicle than the car exerts on the truck) receives a larger percentage 

of responses in item 4 (Figure 2). The main alternative option B (the car exerts more force on the truck than the truck exerts on the 

car) demonstrates that students are not well-versed in the scientific concepts of impulsive forces. Furthermore, students were 

able to deduce that a greater mass equals a greater force. As a result, the findings confirm Pfundt and Duit’s (1994) findings that 

students have a misperception about motion in the concatenation of influences category: motion is decided by a compromise 

between the forces operating on the object. 

Item 7 tests students’ awareness of motion direction by having them swing a steel ball on a string in a horizontal plane in a 

circular pattern (Figure 3). When the thread abruptly breaks near the ball, the direction was to be determined. The keyed option 

B was more appealing to the students emerging with a slightly higher number of students’ frequency responses. In addition to the 

findings of Driver et al. (2014), students have the misunderstanding that a moving object has a force within it that keeps it moving. 

As a result, after the string breaks, it is impossible to determine the proper direction of motion. 

Table 4. Percentage of students who responded to each of the five options on the FCI’s five items 

Alternative options 
FCI item number 

Item 3 Item 4 Item 7 Item 14 Item 20 

A 13.1 46.3 22.2 42.5 29.6 

B 42.3 21.9 32.2 33.7 25.2 

C 16.9 07.9 12.4 09.6 27.4 

D 08.5 12.5 10.6 10.8 08.3 

E 19.2 11.4 22.5 03.4 09.5 

Note. The bold values are the keyed alternative options 

 

Figure 1. Item normal curves for FCI item 3 (key score is C) 
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Item 14 is an intriguing test item that indicates a lower number of students properly answering the question (Figure 4). Item 

14 examines gravity and free fall in the context of an object falling from a horizontally flying plane. The students were supposed 

to figure out and identify the path a bowling ball would take if it fell out of the cargo bay of an airplane. The students were to 

imagine themselves as a person standing on the ground looking at the plane (see item 14). The item demonstrated that the 

majority of students had preconceptions because they did not correctly score the item. As a result, physics instructors are expected 

to recognize aspects of students’ reasoning that does not extend towards a correct Newtonian dimension and then use the 

appropriate approach to conceptually transfer the low ability beyond the threshold mark. 

 

Figure 2. Item normal curves for FCI item 4 (key score is E) 

 

Figure 3. Item normal curves for FCI item 7 (key score is B) 

 

 

Figure 4. Item normal curves for FCI item 14 (key score is D) 
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Item 20 tests students’ knowledge of object positions and accelerations (Figure 5). Because the distractors were more 

appealing than the keyed option, students’ performance on this item was relatively low. Higher percentage responses were 

received for the distractors A (acceleration of “a” is greater than the acceleration of “b”), B (acceleration of “a” equals the 

acceleration of “b”), and C (acceleration of “b” is larger than the acceleration of “a”). A few students chose the keyed alternative 

option D (the acceleration of “a” equals the acceleration of “b”. Both accelerations are zero). As a result, the biggest number of 

students selecting distractors indicates that they are struggling with concepts of position; distance, velocity, and acceleration are 

all difficult to distinguish. 

CONCLUSIONS 

Upon completing the secondary school physics curriculum, we decided to investigate which misconceptions were prominent 

in the students’ minds when they answered the FCI questions. We discovered that students have difficulty understanding concepts 

in “force and motion” concepts. The difficulty and misunderstandings of the students’ efforts were reflected in their grades. The 

average grade of 6.52 is well below average. The students were unable to choose the proper response from the multiple-choice 

options offered, indicating that they had only a partial understanding of the FCI test items. The FCI items were found to be valid in 

terms of construct validity and content validity, as well as relevant and linked to the goals of the Ugandan physics teaching 

syllabus, according to the physics educators. However, utilizing point-biserial correlations to support the experts’ suggestions 

concerning the validity of the FCI, the students’ responses disagreed. The point–biserial correlation coefficients were used to judge 

the validity of the FCI item in this educational context, and all of the selected FCI items were found to be invalid below the minimum 

threshold value of 0.15. The distractors of the four FCI items were the most appealing, with the largest percentages of students 

choosing each alternate option. As a result, students come to physics classrooms with preconceived notions about their prior 

knowledge, perspectives, beliefs, and values. As a result, students develop prejudices and beliefs based on scientifically incorrect 

assumptions. This study’s students have misconceptions. But, if physics teachers and students collaborate in an active learning 

environment using conceptual change methodologies, this can be easily remedied. The study will awaken teachers and students 

to a variety of concepts for enhancing physics learning and comprehension, and eventually attaining meaningful learning. 
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APPENDIX A 

Analyzed FCI Items 

The selected FCI items discussed in this paper are presented. Questions 3, 4, 7, 14, and 20 are included in the students’ responses and 

our analysis. The questions were carefully selected to match into one of Hestenes et al.’s (1992) conceptual domains. 

3. A stone dropped from the roof of a single story building to the surface of the earth: 

(A) reaches a maximum speed quite soon after release and then falls at a constant speed thereafter. 

(B) speeds up as it falls because the gravitational attraction gets considerably stronger as the stone gets closer to the earth. 

(C) speeds up because of an almost constant force of gravity acting upon it. 

(D) falls because of the natural tendency of all objects to rest on the surface of the earth. 

(E) falls because of the combined effects of the force of gravity pushing it downward and the force of the air pushing it downward. 

4. A large truck collides head-on with a small compact car. During the collision: 

(A) the truck exerts a greater amount of force on the car than the car exerts on the truck. 

(B) the car exerts a greater amount of force on the truck than the truck exerts on the car. 

(C) neither exerts a force on the other, the car gets smashed simply because it gets in the way of the truck. 

(D) the truck exerts a force on the car but the car does not exert a force on the truck. 

(E) the truck exerts the same amount of force on the car as the car exerts on the truck. 

7. A steel ball is attached to a string and is swung in a circular path in a horizontal plane as illustrated in the accompanying figure.  

 

At the point P indicated in the figure, the string suddenly breaks near the ball. If these events are observed from directly above as in 

the figure, which path would the ball most closely follow after the string breaks?  

(A) A (B) B (C) C (D) D (E) E 

14. A bowling ball accidentally falls out of the cargo bay of an airliner as it flies along in a horizontal direction. As observed by a person 

standing on the ground and viewing the plane as in the figure at right, which path would the bowling ball most closely follow after leaving 

the airplane? 

 

(A) A (B) B (C) C (D) D (E) E 

20. The positions of two blocks at successive 0.20–second time intervals are represented by the numbered squares in the figure 

below. The blocks are moving toward the right. 

 

The accelerations of the blocks are related, as follows: 

(A) The acceleration of “a” is greater than the acceleration of “b”. 

(B) The acceleration of “a” equals the acceleration of “b”. Both accelerations are greater than zero. 

(C) The acceleration of “b” is greater than the acceleration of “a”. 

(D) The acceleration of “a” equals the acceleration of “b”. Both accelerations are zero. 

(E) Not enough information is given to answer the question. 
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